i3geek.com
闫庚哲的个人博客

并查集 学习详解

原文

  • 并查集:(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

  • 并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:
利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图

  • 并查集的优化

1、Find_Set(x)时 路径压缩
寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
答案是肯定的,这就是路径压缩,即当我们经过”递推”找到祖先节点后,”回溯”的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

2、Union(x,y)时 按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

  • 主要代码实现
int father[MAX];   /* father[x]表示x的父节点*/
int rank[MAX];     /* rank[x]表示x的秩*/
 
/* 初始化集合*/
 
void Make_Set(int x)
{
    father[x] = x; //根据实际情况指定的父节点可变化
    rank[x] = 0;   //根据实际情况初始化秩也有所变化
}
 
/* 查找x元素所在的集合,回溯时压缩路径*/
 
int Find_Set(int x)
{
    if (x != father[x])
    {
        father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华
    }
    return father[x];
}
 
/*
按秩合并x,y所在的集合
下面的那个if else结构不是绝对的,具体<strong>根据实际情况</strong>变化
但是,宗旨是不变的即,按秩合并,实时更新秩。
*/
 
void Union(int x, int y)
{
    x = Find_Set(x);
    y = Find_Set(y);
    if (x == y) return;
    if (rank[x] > rank[y])
    {
        father[y] = x;
        rank[x] += rank[y];
    }else
    {
        if (rank[x] == rank[y])
        {
            rank[y]++;
        }
        father[x] = y;
    }
}

简化代码(不含秩):

int find(int p)  
{   
    // 寻找p节点所在组的根节点,根节点具有性质id[root] = root  
    while (p != id[p]) p = id[p];  
    return p;  
}  
void union(int p, int q)  
{   
    // Give p and q the same root.  
    int pRoot = find(p);  
    int qRoot = find(q);  
    if (pRoot == qRoot)   
        return;  
    id[pRoot] = qRoot;    // 将一颗树(即一个组)变成另外一课树(即一个组)的子树  
    count--;  
}
  • 例题

OJ 1010

赞(0)
未经允许不得转载:爱上极客 » 并查集 学习详解
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址