i3geek.com
闫庚哲的个人博客

二叉树——二叉查找树的增、删、查

定义

在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树二叉堆(二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆)。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^{i-1}个结点;深度为k的二叉树至多有2^k-1个结点;对任何一棵二叉树T,如果其终端结点数为n_0,度为2的结点数为n_2,则n_0=n_2+1。一棵深度为k,且有2^k-1个节点称之为满二叉树;深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为完全二叉树。

类型

  1. 完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。
  2. 满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
  3. 平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

二叉查找树

二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。如下图

定义

二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

  1. 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
  3. 左、右子树也分别为二叉排序树;
  4. 没有键值相等的节点。

二叉查找树是满足以下条件的二叉树:1.左子树上的所有节点值均小于根节点值,2右子树上的所有节点值均不小于根节点值,3,左右子树也满足上述两个条件。

特点

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销

但B树在经过多次插入与删除后,有可能导致不同的结构:

右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

查找

  1. 二叉树若根结点的关键字值等于查找的关键字,成功
  2. 否则,若小于根结点的关键字值,递归查左子树。若大于根结点的关键字值,递归查右子树。若子树为空,查找不成功
pnode search_BST(pnode p, int x)
{
    bool solve = false;
    while(p && !solve){
        if(x == p->val){
            solve = true;    
        }    
        else if(x < p->val){
            p = p->lchild;    
        }
        else{
            p = p->rchild;    
        }
    }
    if(p == NULL){
        cout << "没有找到" << x << endl;    
    } 
    return p;
}

 增加

  1. 若当前的二叉查找树为空,则插入的元素为根节点,
  2. 若插入的元素值小于根节点值,则将元素插入到左子树中,
  3. 若插入的元素值不小于根节点值,则将元素插入到右子树中。
struct node
{
    int val;
    pnode lchild;
    pnode rchild;
};

pnode BT = NULL;


//递归方法插入节点 
pnode insert(pnode root, int x)
{
    pnode p = (pnode)malloc(LEN);
    p->val = x;
    p->lchild = NULL;
    p->rchild = NULL;
    if(root == NULL){
        root = p;    
    }    
    else if(x < root->val){
        root->lchild = insert(root->lchild, x);    
    }
    else{
        root->rchild = insert(root->rchild, x);    
    }
    return root;
}

//非递归方法插入节点 
void insert_BST(pnode q, int x)
{
    pnode p = (pnode)malloc(LEN);
    p->val = x;
    p->lchild = NULL;
    p->rchild = NULL;
    if(q == NULL){
        BT = p;
        return ;    
    }        
    while(q->lchild != p && q->rchild != p){
        if(x < q->val){
            if(q->lchild){
                q = q->lchild;    
            }    
            else{
                q->lchild = p;
            }        
        }    
        else{
            if(q->rchild){
                q = q->rchild;    
            }    
            else{
                q->rchild = p;    
            }
        }
    }
    return;
}

 删除

分三种情况进行处理:

  1. p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a。
  2. p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可;(注意分是根节点和不是根节点);如图b。
  3. p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。

bool delete_BST(pnode p, int x) //返回一个标志,表示是否找到被删元素 
{
    bool find = false;
    pnode q;
    p = BT;
    while(p && !find){  //寻找被删元素 
        if(x == p->val){  //找到被删元素 
            find = true;    
        }    
        else if(x < p->val){ //沿左子树找 
            q = p;
            p = p->lchild;    
        }
        else{   //沿右子树找 
            q = p;
            p = p->rchild;    
        }
    }
    if(p == NULL){   //没找到 
        cout << "没有找到" << x << endl;    
    }
    
    if(p->lchild == NULL && p->rchild == NULL){  //p为叶子节点 
        if(p == BT){  //p为根节点 
            BT = NULL;    
        }
        else if(q->lchild == p){   
            q->lchild = NULL;
        }        
        else{
            q->rchild = NULL;    
        }
        free(p);  //释放节点p 
    }
    else if(p->lchild == NULL || p->rchild == NULL){ //p为单支子树 
        if(p == BT){  //p为根节点 
            if(p->lchild == NULL){
                BT = p->rchild;    
            }    
            else{
                BT = p->lchild;    
            }
        }    
        else{
            if(q->lchild == p && p->lchild){ //p是q的左子树且p有左子树 
                q->lchild = p->lchild;    //将p的左子树链接到q的左指针上 
            }    
            else if(q->lchild == p && p->rchild){
                q->lchild = p->rchild;    
            }
            else if(q->rchild == p && p->lchild){
                q->rchild = p->lchild;    
            }
            else{
                q->rchild = p->rchild;
            }
        }
        free(p);
    }
    else{ //p的左右子树均不为空 
        pnode t = p;
        pnode s = p->lchild;  //从p的左子节点开始 
        while(s->rchild){  //找到p的前驱,即p左子树中值最大的节点 
            t = s;   
            s = s->rchild;    
        }
        p->val = s->val;   //把节点s的值赋给p 
        if(t == p){
            p->lchild = s->lchild;    
        }    
        else{
            t->rchild = s->lchild;    
        }
        free(s); 
    }
    return find;
}
赞(0)
未经允许不得转载:爱上极客 » 二叉树——二叉查找树的增、删、查
分享到: 更多 (0)

评论 2

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
  1. #1

    二叉树,大学学的东东,全忘完了 😉

    hd4年前 (2015-02-25)回复
    • 最近在准备面试。。。又捡起来看了。。唉

      yan4年前 (2015-02-25)回复