i3geek.com
闫庚哲的个人博客

树——多路数,B树、B-树、B+树、B*树

暂且只研究树的基本内容,大致按如下分类:

tree

故本博只讨论:二叉查找树二叉堆、AVL平衡树、多路数(见本文)

名词解释

  • B树:二叉查找树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;
  • B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
  • B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
  • B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

B-tree的用途

鉴于B-tree具有良好的定位特性,其常被用于对检索时间要求苛刻的场合,例如:

1、B-tree索引是数据库中存取和查找文件(称为记录或键值)的一种方法。

2、硬盘中的结点也是B-tree结构的。与内存相比,硬盘必须花成倍的时间来存取一个数据元素,这是因为硬盘的机械部件读写数据的速度远远赶不上纯电子媒体的内存。与一个结点两个分支的二元树相比,B-tree利用多个分支(称为子树)的结点,减少获取记录时所经历的结点数,从而达到节省存取时间的目的。


B树

请看二叉查找树


B-树

是一种多路搜索树(并不是二叉的):

  1. 定义任意非叶子结点最多只有M个儿子;且M>2;
  2. 根结点的儿子数为[2, M];
  3. 除根结点以外的非叶子结点的儿子数为[M/2, M];
  4. 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  5. 非叶子结点的关键字个数=指向儿子的指针个数-1;
  6. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  7. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  8. 所有叶子结点位于同一层;

如:(M=3)

B-树的搜索

从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性

  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B-树的查找(暂不考虑实现)

B-树的查找过程:根据给定值查找结点和在结点的关键字中进行查找交叉进行。首先从根结点开始重复如下过程:

若比结点的第一个关键字小,则查找在该结点第一个指针指向的结点进行;若等于结点中某个关键字,则查找成功;若在两个关键字之间,则查找在它们之间的指针指向的结点进行;若比该结点所有关键字大,则查找在该结点最后一个指针指向的结点进行;若查找已经到达某个叶结点,则说明给定值对应的数据记录不存在,查找失败。

B-树的插入(暂不考虑实现)

插入的过程分两步完成:

1)利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。否则查找操作必失败于某个最低层的非终端结点上。

(2)判断该结点是否还有空位置。即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。

分裂的方法是:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置的关键字)分成两部分。左部分所含关键字放在旧结点中,右部分所含关键字放在新结点中,中间位置的关键字连同新结点的存储位置插入到父结点中。如果父结点的关键字个数也超过(m-1),则要再分裂,再往上插。直至这个过程传到根结点为止。

 

B-树的删除(暂不考虑实现)

在B-树上删除关键字k的过程分两步完成:

1)利用前述的B-树的查找算法找出该关键字所在的结点。然后根据 k所在结点是否为叶子结点有不同的处理方法。

2)若该结点为非叶结点,且被删关键字为该结点中第i个关键字key[i],则可从指针son[i]所指的子树中找出最小关键字Y,代替key[i]的位置,然后在叶结点中删去Y

因此,把在非叶结点删除关键字k的问题就变成了删除叶子结点中的关键字的问题了。

B-树叶结点上删除一个关键字的方法是

首先将要删除的关键字 k直接从该叶子结点中删除。然后根据不同情况分别作相应的处理,共有三种可能情况:

1)如果被删关键字所在结点的原关键字个数n>=ceil(m/2),说明删去该关键字后该结点仍满足B-树的定义。这种情况最为简单,只需从该结点中直接删去关键字即可。

2)如果被删关键字所在结点的关键字个数n等于ceil(m/2)-1,说明删去该关键字后该结点将不满足B-树的定义,需要调整。

调整过程为:如果其左右兄弟结点中有“多余”的关键字,即与该结点相邻的右(左)兄弟结点中的关键字数目大于ceil(m/2)-1。则可将右(左)兄弟结点中最小(大)关键字上移至双亲结点。而将双亲结点中小(大)于该上移关键字的关键字下移至被删关键字所在结点中。

3)如果左右兄弟结点中没有“多余”的关键字,即与该结点相邻的右(左)兄弟结点中的关键字数目均等于ceil(m/2)-1。这种情况比较复杂。需把要删除关键字的结点与其左(或右)兄弟结点以及双亲结点中分割二者的关键字合并成一个结点,即在删除关键字后,该结点中剩余的关键字加指针,加上双亲结点中的关键字Ki一起,合并到Ai(是双亲结点指向该删除关键字结点的左(右)兄弟结点的指针)所指的兄弟结点中去。如果因此使双亲结点中关键字个数小于ceil(m/2)-1,则对此双亲结点做同样处理。以致于可能直到对根结点做这样的处理而使整个树减少一层。

总之,设所删关键字为非终端结点中的Ki,则可以指针Ai所指子树中的最小关键字Y代替Ki,然后在相应结点中删除Y。对任意关键字的删除都可以转化为对最下层关键字的删除。

 

如图示:

a、被删关键字Ki所在结点的关键字数目不小于ceil(m/2),则只需从结点中删除Ki和相应指针Ai,树的其它部分不变。

 

b、被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。调整过程如上面所述。

 

c、被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,假设该结点有右兄弟,且其右兄弟结点地址由其双亲结点指针Ai所指。则在删除关键字之后,它所在结点的剩余关键字和指针,加上双亲结点中的关键字Ki一起,合并到Ai所指兄弟结点中(若无右兄弟,则合并到左兄弟结点中)。如果因此使双亲结点中的关键字数目少于ceil(m/2)-1,则依次类推。

 

 


B+树

B+树是B-树的变体,也是一种多路搜索树,其定义基本与B-树同,除了:

  1. 非叶子结点的子树指针与关键字个数相同;
  2. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
  3. 为所有叶子结点增加一个链指针;
  4. 所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性

  1. 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  2. 不可能在非叶子结点命中;
  3. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  4. 更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;


总结

B-tree:有序数组+平衡多叉树;

B+-tree:有序数组链表+平衡多叉树;

B*-tree:一棵丰满的B+-tree。

在大规模数据存储的文件系统中,B-tree系列数据结构,起着很重要的作用,对于存储不同的数据,节点相关的信息也是有所不同,这里根据自己的理解,画的一个查找以职工号为关键字,职工号为38的记录的简单示意图。(这里假设每个物理块容纳3个索引,磁盘的I/O操作的基本单位是块(block),磁盘访问很费时,采用B+-tree有效的减少了访问磁盘的次数。)

赞(0)
未经允许不得转载:爱上极客 » 树——多路数,B树、B-树、B+树、B*树
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址